

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

REIRRADIAZIONE: REQUISITI MINIMI RICHIESTI

Dr.ssa Esmeralda Scipilliti

Department of Radiation Oncology, Istituto Nazionale Tumori-IRCCS Fondazione G. Pascale, Naples

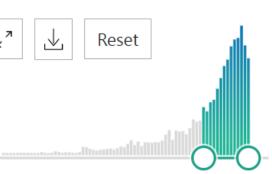
Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

No conflict of interest

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Pub Med[®]


RESULTS BY YEAR

Parameters reported?

- OS
- LC
- QoL
- Toxicity
- Follow up

- Dose 1° RT
- Dose sum
- PTV overlap
- OARs constraints
- DVH PTV,OARs

3,156 results

AIRO2023

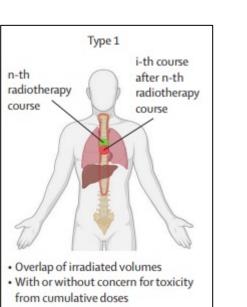
Table 1: Selected recent (> 2010) prospective studies from supplementary data 1

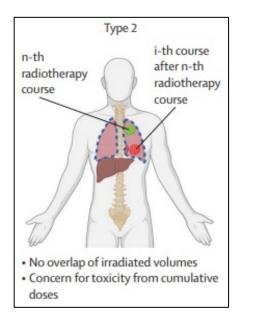
Name / Date	Type of study	Organ	No. of	Technique	Median time	Outcomes	Late toxicity
	.,,,,	0.0			before reRT		
			patients				(patients)
Garg 2011	Single-institution, prospective, phase I/II	Bone (Spine)	59	SBRT	12.8 - 19.8	LRC: 1 yr, 76%	2 ≥ grade 3 (lumbar
					months	OS: 1 yr, 76%	plexopathy)
Møller 2017	Single-institution, prospective, phase I	Brain (GBM)	31	SBRT	> 6 months	Median PFS: 2.8 m.	3 ≥ grade 3 (radionecrosis)
	(NCT02025231)					Median OS: 7 m.	
Shi 2018 (41)	Multi-institution, prospective, phase III	Brain (GBM)	88 (24 reRT	Various (IMRT,	nr	Median OS: 8.2 m.	nr
	(RTOG 0525)		alone)	SBRT, BT)			
Kauer-Dorner	Single-institution, prospective, phase I	Breast	39	BT	~11 years	LRC: 5yr. 93%	20 grade 1-2, 4 ≥ grade 3
2012						OS: 5 y. 87%	(fibrosis and pain)
Arthur 2020	Multi-institution, prospective, phase II (NRG	Breast	58	3D-CRT	13.4 years	LRC: 5 yr, 95%	4 ≥ grade 3 (fibrosis, breast
	oncology RTOG 1014)					OS; 5 yr. 95%	atrophy)
Fernandes 2016	Single-institution, prospective, phase I	Gut	14	PT	32 months	OS: 1y. 70.7%	2 ≥ grade 3 (esophageal
		(Esophagus)					ulceration)
Chen 2011	Single-institution, prospective, phase I	Head and Neck	21	IMRT	14 months	LRC: 1 yr. 72%, 2 yr. 65%	3, grade nr (trismus and
						OS: 1 yr. 65%, 2 yr. 40%	brachial plexopathy)
Vargo 2015	Single-institution, prospective, phase I (NCT	Head and Neck	50	SBRT (with	18 months	LRC: 1yr. 37%	5 ≥ grade 3 (dysphagia
	01104922)			cetuximab)		OS: 1 yr. 40%	aerodigestive fistulas)
Chao 2017	Multi-institution, prospective, phase II	Lung	57	PT	19 months	OS: 1yr. 59%	24 ≥ grade 3 (5 deaths)
	(NCT01126476)					PFS: 1 yr. 58%	
Crook 2019	Multi-institution, prospective, phase II (NRG	Pelvis	92	BT	85 months	nr	6 ≥ grade 3 (rectal bleed,
	Oncology/RTOG-0526)	(prostate)					retention, frequency)

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus on re-irradiation: definition, reporting, and clinical decision making

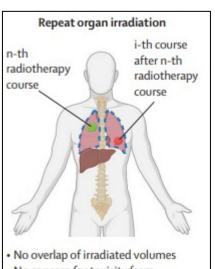

Nicolaus Andratschke*, Jonas Willmann*, Ane L Appelt, Najlaa Alyamani, Panagiotis Balermpas, Brigitta G Baumert, Coen Hurkmans, Morten Høyer, Johannes A Langendijk, Orit Kaidar-Person, Yvette van der Linden, Icro Meattini, Maximilian Niyazi, Nick Reynaert, Dirk De Ruysscher, Stephanie Tanadini-Lang, Peter Hoskin, Philip Poortmans, Carsten Nieder


- Universal terminology
- Assessment of Re-RT
- Improving reporting quality

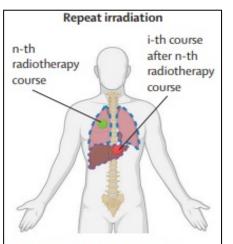
..."re-irradiation is a new course of radiotherapy, either to a previously irradiated volume (irrespective of concerns of toxicity) or where the cumulative dose raises concerns of toxicity".

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti


European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus on re-irradiation: definition, reporting, and clinical decision making

Nicolaus Andratschke^{*}, Jonas Willmann^{*}, Ane L Appelt, Najlaa Alyamani, Panagiotis Balermpas, Brigitta G Baumert, Coen Hurkmans, Morten Høyer, Johannes A Langendijk, Orit Kaidar-Person, Yvette van der Linden, Icro Meattini, Maximilian Niyazi, Nick Reynaert, Dirk De Ruysscher, Stephanie Tanadini-Lang, Peter Hoskin, Philip Poortmans, Carsten Nieder


Re-irradiation

AIRO2023

- No concern for toxicity from cumulative doses
- Target volumes in the same organ

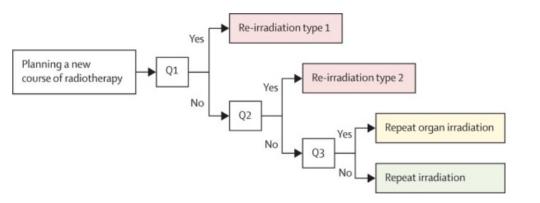
- No overlap of irradiated volumes
- No concern for toxicity from cumulative doses
- Target volumes in different organs

Radioterapia Oncologica: l'evoluzione al servizio dei pazient

European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus on re-irradiation: definition, reporting, and clinical decision making

Nicolaus Andratschke*, Jonas Willmann*, Ane L Appelt, Najlaa Alyamani, Panagiotis Balermpas, Brigitta G Baumert, Coen Hurkmans, Morten Høyer, Johannes A Langendijk, Orit Kaidar-Person, Yvette van der Linden, Icro Meattini, Maximilian Niyazi, Nick Reynaert, Dirk De Ruysscher, Stephanie Tanadini-Lang, Peter Hoskin, Philip Poortmans, Carsten Nieder

Repeat Irradiation



AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus on re-irradiation: definition, reporting, and clinical decision making

Nicolaus Andratschke^{*}, Jonas Willmann^{*}, Ane L Appelt, Najlaa Alyamani, Panagiotis Balermpas, Brigitta G Baumert, Coen Hurkmans, Morten Høyer, Johannes A Langendijk, Orit Kaidar-Person, Yvette van der Linden, Icro Meattini, Maximilian Niyazi, Nick Reynaert, Dirk De Ruysscher, Stephanie Tanadini-Lang, Peter Hoskin, Philip Poortmans, Carsten Nieder

Q1=is there a geometrical overlap of the irradiated volumes?

Q2=is there a concern for toxicity from the cumulative doses?

Q3=are the target volumes of current and previous radiotherapy located in the same organ?

AIRO2023

Patient characteristics

Required

- General information (eq, age, sex)
- Performance status (eq, Eastern Cooperative Oncology Group or Karnofsky performance status)
- Organ function

Recommended

- Lifestyle factors (eq, drinking and smoking habits)
- Comorbidities
- Charlson Comorbidity Index

Tumour characteristics

Required

- Primary tumour histology
- Site and location
- Local recurrence versus metastases versus new primary
- In-field versus marginal versus out-of-field recurrence
- Retreatment target volume size
- TNM stage

Recommended

European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer stage of oligometastatic disease (if applicable)

Optional

 Union for International Cancer Control stage or similar classification

Previous and current oncological treatments Required

- Current systemic therapies
- Previous surgical interventions
- Planned surgical interventions
- Toxicities and impairments from previous medical treatments

Recommended

Previous systemic therapies

Previous radiotherapy information

Required

- Number of previous courses
- Standardised reporting of toxicity (eq, common terminology criteria of adverse events)
- Time interval since previous courses
- Persistent toxicity of previous courses scored according to the most recent common terminology criteria of adverse events
- Dose prescription and fractionation
- Radiotherapy modality and delivery technique

Indication to perform retreatment

Required

- Treatment approach: re-irradiation, repeat organ irradiation, or repeat irradiation
- Treatment intent: palliative, curative, or local ablative
- Treatment goal: local control, symptom relief or prevention, or prolonging survival

Treatment planning

Required

- Dose prescription and fractionation
- Imaging method for target and organs at risk delineation
- Target and organs at risk definition guideline or protocol
- Dose constraints of organs at risk
- Radiotherapy modality and delivery technique

Recommended

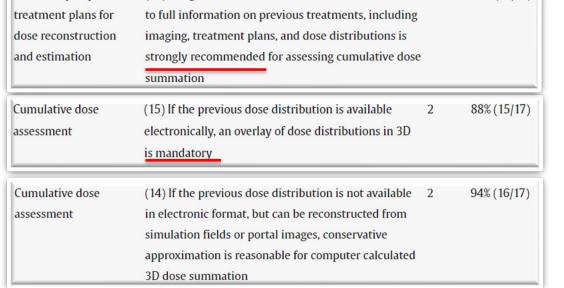
- Biological recalculation of accumulated dose
- Dose calculation algorithm
- Prioritisation of planning objectives

Assessment of cumulative doses

Required

- Image registration technique
- Dose summation method (three-dimensional or point doses, physical or biological)
- Radiobiological considerations (such as α/β or tissue recovery)
- Organs at risk cumulative doses

AIRO2023


Availability of previous

l'evoluzione al servizio dei pazienti European Society for Radiotherapy and Oncology and

Radioterapia Oncologica:

European Organisation for Research and Treatment of Cancer consensus on re-irradiation: definition, reporting, and clinical decision making

Nicolaus Andratschke^{*}, Jonas Willmann^{*}, Ane L Appelt, Najlaa Alyamani, Panagiotis Balermpas, Brigitta G Baumert, Coen Hurkmans, Morten Høyer, Johannes A Langendijk, Orit Kaidar-Person, Yvette van der Linden, Icro Meattini, Maximilian Niyazi, Nick Reynaert, Dirk De Ruysscher, Stephanie Tanadini-Lang, Peter Hoskin, Philip Poortmans, Carsten Nieder

(12) If high-dose re-irradiation is considered, access

76% (13/17)

2

AIRO2023

Considerations and recommendations for reirradiation in clinical practice

... when to consider CAREFULLY reRT

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus on re-irradiation: definition, reporting, and clinical decision making

Nicolaus Andratschke^{*}, Jonas Willmann^{*}, Ane L Appelt, Najlaa Alyamani, Panagiotis Balermpas, Brigitta G Baumert, Coen Hurkmans, Morten Høyer, Johannes A Langendijk, Orit Kaidar-Person, Yvette van der Linden, Icro Meattini, Maximilian Niyazi, Nick Reynaert, Dirk De Ruysscher, Stephanie Tanadini-Lang, Peter Hoskin, Philip Poortmans, Carsten Nieder

Performance status

Estimated survival based on tumour and comorbidities

Persistent toxicity from previous irradiation courses

Time interval since last irradiation

Tumour response to previous irradiation

(4) A stable performance status of ECOG ≤ 2 is recommended for patients who are considered for high-dose re-irradiation

(5) High-dose re-irradiation in curative intent is not recommended if estimated survival is <6 months

(6) Re-irradiation should be critically discussed in case of persistent grade 3 or greater radiation-induced toxicity, also taking the patient's risk acceptance into account

(7) High-dose re-irradiation in curative intent within 6 months of previous irradiation should be carefully weighed against the benefit from the initial radiotherapy and the estimated risk of toxicity

(8) High-dose re-irradiation in curative intent should not be prescribed if the best response was progressive disease

AIRO2023

...toxicity & recovery considerations

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus on re-irradiation: definition, reporting, and clinical decision making

Nicolaus Andratschke^{*}, Jonas Willmann^{*}, Ane L Appelt, Najlaa Alyamani, Panagiotis Balermpas, Brigitta G Baumert, Coen Hurkmans, Morten Høyer, Johannes A Langendijk, Orit Kaidar-Person, Yvette van der Linden, Icro Meattini, Maximilian Niyazi, Nick Reynaert, Dirk De Ruysscher, Stephanie Tanadini-Lang, Peter Hoskin, Philip Poortmans, Carsten Nieder

Patient's risk acceptance if established dose constraints for organs at risk are exceeded	(2) For patients with short life expectancy, re-irradiation for symptom control might be considered without concerns for irreversible toxicity, despite excessive cumulative doses
Serial vs parallel organs	(11) When assessing the risk for toxicity from cumulative doses, maximum doses need to be considered for serial organs (eg, the spinal cord), whereas the irradiated volume is relevant for parallel organs (eg, the lung or liver)
Tolerance and recovery	(20) Tissue-dependent recovery or dose discount (ie, the amount of the previously given dose that is assumed to be recovered and can be substracted for further cumulative dose calculations) are subject to ongoing research and therefore a reliable recommendation on their use is not possible, except for CNS and spinal cord

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Salvage Radiosurgery for Selected Patients with Recurrent Malignant Gliomas

Miguel Martínez-Carrillo,¹ **Isabel Tovar-Martín** [→],¹ Mercedes Zurita-Herrera,¹ Rosario Del Moral-Ávila,¹ Rosario Guerrero-Tejada,¹ Enrique Saura-Rojas,² Juan Luis Osorio-Ceballos,³ Juan Pedro Arrebola-Moreno,¹ and José Expósito-Hernández¹

Prognostic scores helping the decision making

Generation and validation of a prognostic score to predict outcome after re-irradiation of recurrent glioma

STEPHANIE E. COMBS¹, LUTZ EDLER², RENATE RAUSCH², THOMAS WELZEL¹, WOLFGANG WICK³ & JÜRGEN DEBUS¹

Retreatment of Recurrent or Second Primary **Head** and **Neck** Cancer After Prior Radiation: Executive Summary of the American Radium Society Appropriate Use Criteria.

Ward MC, Koyfman SA, Bakst RL, Margalit DN, Beadle BM, Beitler JJ, Chang SS, Cooper JS, Galloway TJ, Ridge JA, Robbins JR, Sacco AG, Tsai CJ, Yom SS, Siddiqui F.

AIRO2023

Clinical challenges:

- \Rightarrow Patient selection
- \Rightarrow Risk/benefit balance
- \Rightarrow Multidisciplinary staff meeting

Radioterapia Oncologica: 'evoluzione al servizio dei pazienti

Technical challenges:

- \Rightarrow Radiation technique selection
- \Rightarrow Target volume definition
- \Rightarrow Maximal protection of healthy tissues

«Primum non nocere"

